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Signaling events in eukaryotic cells are often guided by a scaffolding protein. Scaffold proteins assemble
multiple proteins into a spatially localized signaling complex and exert numerous physical effects on signaling
pathways. To study these effects, we consider a minimal, three-state kinetic model of scaffold-mediated kinase
activation. We first introduce and apply a path summation technique to obtain approximate solutions to a single
molecule master equation that governs protein kinase activation. We then consider exact numerical solutions.
We comment on when this approximation is appropriate and then use this analysis to illustrate the competition
of processes occurring at many time scales that are involved in signal transduction in the presence of a scaffold
protein. We find that our minimal model captures how scaffold concentration can influence the times over
which signaling is distributed in kinase cascades. For a range of scaffold concentrations, scaffolds allow for
signaling to be distributed over multiple decades. The findings are consistent with recent experiments and
simulation data. These results provide a framework and offer a mechanism for understanding how scaffold
proteins can influence the shape of the waiting time distribution of kinase activation and effectively broaden
the times over which protein kinases are activated in the course of cell signaling.
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INTRODUCTION

Cells detect external signals in the form of stresses,
growth factors, DNA damage, hormones, among many oth-
ers, and integrate them to achieve an appropriate biological
response �1�. Biochemical modifications in the form of re-
versible phosphorylations by enzymes known as kinases are
detected by proteins to form networks that are used to inte-
grate these signals �2�. These complex networks are com-
prised of numerous modular structures that allow for many
different biological responses. Signal propagation through
these networks is often guided by a scaffold protein �3�.
Scaffold proteins assemble multiple kinases �that are acti-
vated sequentially in a cascade� in close proximity to form
signaling complexes. Scaffold proteins are believed to regu-
late biochemical signaling pathways in a multitude of ways
�3–5�.

Experiments have suggested that the scaffold proteins
have profound effects on regulating signaling dynamics
�6–8�. In particular, a key parameter is believed to be the
concentration of scaffold proteins. Recent simulation results
�9�, which elaborated on these findings, showed that one ef-
fect that the concentration of scaffold proteins may have is to
control the shape of the waiting time distribution of activa-
tion. Recent work has shown that the waiting time distribu-
tion is closely related to signal duration �e.g., the time over
which an active signaling intermediate persists� �9�. Signal
duration is known to be an important determinant in many
cell decision making processes �10–12� and therefore, a
knowledge of how the concentration of scaffold proteins af-
fect this waiting time distribution is important to understand.
The waiting time distribution has been used in multiple the-

oretical contexts �13,14� to study signaling dynamics and has
been measured in different experimental contexts in diverse
biology systems �15,16�.

In this work, we present a minimal model that aims to
understand how changes in signaling dynamics manifested
through the first passage time statistics are affected solely by
changes in scaffold concentration. The purpose of this study
is to first construct and then solve a minimal model that aims
to capture these desired effects. Many other factors are un-
doubtedly important in determining how signaling dynamics
are regulated in complex biochemical pathways. These fac-
tors include but are not limited to feedback control, allosteric
regulation by the scaffold, degradation and internalization
rates of the complexes along with many others and have
been discussed elsewhere �5,17�. Other complexities such as
the multiple phosphorylation sites and the processivity and
distributivity of the phosphorylation network �18� also affect
the dynamics of signal output. Endocytosis and the time
scales associated with protein degradation are also important.
Our aim is to investigate concentration effects of scaffolds on
regulating signaling dynamics which have shown to be im-
portant in experiments and simulations.

We present a coarse grained, minimal model that illus-
trates how the waiting time distribution of protein kinase
activation is modified by the presence of different amounts
of scaffold protein. The model involves multiple states in
which a single protein kinase, situated at the end of a cas-
cade, resides and corresponding transitions between these
states are allowed �19�. We analyze the resulting master
equation by first introducing an approximate scheme that in-
volves a weighted path summation over the possible trajec-
tories that an individual kinase can take in the course of its
transition from an inactive to an active state �20�. We also
consider numerical solutions. We find that, consistent with
known simulation results, in certain limits the waiting time
distribution of activation sharply decays and is effectively
characterized by a single exponential whereas in other re-
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gimes, the waiting time distribution takes on a more compli-
cated form. Our model provides a simple mechanistic de-
scription for how scaffold proteins and differences in their
concentrations may regulate the waiting time distribution of
kinase activation.

TIME SCALES FOR SIGNAL TRANSDUCTION
THROUGH SCAFFOLD PROTEINS

Let us first consider physically, the time scales involved in
scaffold-mediated cell signaling. The signaling event that we
consider consists of the sequential activation of multiple en-
zymes �kinases� in a cascade. Consider the processes that
must occur in order for a kinase at the end of a scaffolded
kinase cascade to become activated. In this picture, we fol-
low the trajectory of a single molecule as it interacts with the
scaffold and the upstream components of the pathway in
which it is involved. Within the biochemical pathway, ki-
nases in solution must encounter its targeted substrates by
diffusion; therefore, encounter �or diffusion� times for the
kinase in a sequence of a multi-tiered biochemical cascade,
are important. These encounter times �ec, determined by dif-
fusive motion of proteins, behave as �ec��D�d/2�−1 in d di-
mensions, for a concentration, � and diffusivity D. Other
time scales ��k ,�p ,�on,�off� arise from rates of catalysis and
protein-protein interactions such as the binding of a kinase to
a scaffold. These times are for activation ��k� and deactiva-
tion ��p� by a kinase and phosphatase �an enzyme that re-
moves a phosphate group� as well as for binding ��on� and
unbinding ��off� to and from a scaffold.

We investigated the dynamical consequences of a model
in which, in the course of activation of a single kinase, the
collection of microscopic processes described above interacts
with relative scaffold density � to give rise to several pro-
cesses �involving state transitions of single molecule� with
eight characteristic time scales �i ;�i� ��1,. . .,�8�. Scaffold
density � has been shown in many contexts to be a key
variable regulating signal transduction. If too few scaffolds
are present, signaling occurs predominantly in solution. If
too many scaffolds are present, proteins kinases exist pre-
dominantly in complexes that are incompletely assembled.
There exists, therefore, an optimal concentration to assemble
complete signaling complexes of multiple kinases �3�. Sche-
matics of these different scenarios are shown on the bottom
of Fig. 1.

Kinases in solution can upon binding to a scaffold, be
assembled into a complex that cannot effectively signal. This
is because the complex does not have a complete set of ki-
nases bound to it. Such a kinase then would be trapped in a
signaling incompetent state until it either disassociates from
the complex or the requisite kinases upstream bind to the
complex. Association and disassociation of kinases to and
from incompletely assembled complexes are denoted by
times �1 and �2 and are functions of scaffold density, diffu-
sion times, catalysis rates, and binding kinetics.

This scenario also requires additional time scales: the
times required for a kinase to bind and disassociate from
solution into a signaling incompetent complex ��3 and �4,
respectively� and the times required for a signaling incompe-

tent complex to transition to a signaling competent complex
��5 and �6, respectively� must be accounted for. Finally acti-
vation of the given kinase can occur with times �7 and �8 that
involve diffusion and catalysis. The eight time scales com-
prising the model are functions of the following microscopic
times:

�1 = f��ec,�on,�off,�k,�p,�� ,

�2 = f��off� ,

�3 = f��ec,�on,�off,�k,�p,�� ,

�4 = f��ec,�on,�off,�k,�p,�� ,

�5 = f��ec,�on,�off�k,�p,�� ,

�6 = f��off� ,

�7 = f��ec,�k,�p� ,

�8 = f��ec,�k,�p� .

We studied the dynamics of competing processes occurring
at these eight phenomenological time scales.

MARKOV MODEL ILLUSTRATING THE COMPETITION
BETWEEN MANY PROCESSES

We considered this kinetic model in which a kinase, at the
end of a biochemical cascade, Ki can transition between four
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FIG. 1. �Color online� A three-state kinetic mechanism that char-
acterizes scaffold-mediated cell signaling. Important time scales in
scaffold-mediated signaling shown in a graph of a multistate kinetic
model whose dynamics are governed by eight transitions. The final
kinase molecule in a signaling cascade �C� can transition between
three states denoted with subscripts: in solution �KS�, bound to a
signaling competent complex �KC�, bound to a signaling incompe-
tent complex �KI�, and eventually reaches an activated absorbing
state, �KA�. The relative amount of each state and the rates of tran-
sitioning are functions of the density of scaffold proteins.
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states denoted with four subscripts: In solution �S�, bound to
a signaling competent complex �C�, bound to a signaling
incompetent complex �I�, and activated �A�. Any bound ki-
nase that is a part of an incomplete complex is said to be in
state I. Figure 1 shows a graph of the stochastic transitions to
neighboring states that involve random waiting times that
correspond to a set of eight random variables. The waiting
time for a kinase to transition to a neighboring state is then
Poisson distributed with rate constants, ki ;ki
� �k1 ,k2 , . . . ,k8�. These rate constants are the inverse of the
time scales previously mentioned. Thus for the ith process,
the waiting time distribution, F��i�, is the probability density
for the first passage time �FPT� distribution and takes the
form F��i�=kie

−ki�i. Ultimately, the quantity of interest is the
first-passage time distribution F�t� �or its integrated value�
for a kinase to transition to its activated state which we de-
note by F�t�. F�t� is the time derivative of the cumulative
probability distribution �CDF�, P��A� t��	0

t F��� �d��; so
that d

dt P��A� t�=F�t� where �A is the random waiting time
for activation of a protein kinase. The survival probability
S�t� is related to the FPT and the CDF in the following way,
S�t�=	t

�F�t� �dt� =1−	0
t F�t� �dt� =1− P��A� t�. The ki-

netic equation, with an absorbing boundary condition at ar-
rival at state KA, is written as follows:

d

dt
P� = Q · P� , �1�

where P� �t�= �PKA
�t�PKS

�t�PKC
�t�PKI

�t��T and

Q =

0 k7 k8 0

0 − �k1 + k5 + k7� k6 k2

0 k5 − �k4 + k6 + k8� k3

0 k1 k4 − �k2 + k3�
�

�2�

with the initial condition, P� �0�= �0 CS CC CI�T where CS, CC,
and CI are the probabilities that a given kinase initially re-
sides in the solution, in a signaling-competent complex, or an
incompletely assembled complex; and, for normalization
CS+CI+CC=1. In principle, an exact solution to the equation
can be obtained by finding the eigenvalues and eigenvectors
of Q. However, this calculation requires a solution to a cubic
equation and is too complicated to extract any significant
physical information—the solution to Eqs. �1� and �2� con-
tains well over 100 terms. Therefore, we first employed an
approximate method that in our view clearly shows the de-

pendence of the relevant parameters on the behavior of the
signaling dynamics. The method can also be applied to other
kinetic schemes. We also considered numerical solutions.

PATH SUMMATION OF THE MASTER EQUATION

Formally, we can compute P��A� t� by considering a
weighted sum over all paths that lead to the absorbing state,
KA,

P��A � t� = �
steps,i=1

�

�
states,j=1

3

Cj �
branches

�
� �
jumps,l=1

i

�l� � t�
��

l=1

i

�
l�

���l � �l�� . �3�

The first summation decomposes P��A� t� into separate con-
tributions for each set of paths that contain equivalent num-
bers of steps required to reach the absorbing state, KA; i.e.,
for i=1, all paths requiring one jump are considered, for i
=2, all paths requiring two jumps are considered, etc. Since
there can be more than one path containing i steps leading to
KA, the next summation considers the weighted probability
that, a priori, a kinase is in one of three states: In solution
�S�, bound to a signaling incompetent complex �I�, or bound
to a signaling competent complex �C�; i.e., j� �S , I ,C� and
for normalization, CS+CI+CC=1. The next summation oc-
curs over each branch. A branch is defined here as a unique,
way in which a path of fixed i and j can be traversed. We
account for the probability that a specific path, i, with j steps
on a branch is taken by computing the probability
����jumps,l=1

i �l�� t� that, in time t an enzyme transitions
through a given sequence of jumps. We then avoid over
counting by taking the union of this probability with the joint
probability, �l=1

i �l�
���l��l�

�, that no transitions are made in
the lth step along the path to any state, l�, not along the
considered path; �l is the waiting time to transition along the
lth step of the path and �l�

is the waiting time for a transition
at the lth step to a position m that is not along the selected
path. This term, �l=1

i �l�
���l��l�

�, ensures that each transi-
tion l→ l+1 takes place before any transitions to a point not
along the given path.

Such a path summation is difficult to compute exactly but
conveniently lends itself to approximate evaluations. We first
denote the contribution of each path requiring i steps, ai so
that . Then, the contribution of ai to the overall cumulative
distribution, P��A� t�, decreases monotonically with increas-
ing i. So, ai�ai+1 and thus

�
j=1

3

Cj �
branches

�
� �
jumps,l=1

i

�l� � t��
l=1

i

�
l�

���l � �l�� � �
j=1

3

Cj �
branches

�
� �
jumps,l=1

i+1

�l� � t��
l=1

i+1

�
l�

���l � �l�� . �4�
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Thus, the sum can be truncated at all paths requiring i steps
with an error that is bounded by O�ai+1�. As the number of
steps, i, increases, the total contribution of each path be-
comes smaller by a factor involving the ratio of the total
contribution to P��A� t� for the path containing i+1 and i
steps; i.e.,

ai+1

ai
=

�
j=1

3

Cj �
branches

�
� �
jumps,l=1

i+1

�l� � t��
l=1

i+1

�
l�

���l � �l��

�
j=1

3

Cj �
branches

�
� �
jumps,l=1

i

�l� � t��
l=1

i

�
l�

���l � �l��

.

�5�

We can simplify this formula by making use of two identities
that hold for continuous time Markov chains. For two inde-
pendent random variables, �i and � j, that are exponentially
distributed with time constants, ki and kj, the probability of �i

being less than � j���i�� j� is ���i�� j�=
ki

ki+kj
. Also, for a

sum of n exponentially distributed random variables �i ;�i
� ��1 ,�2 , . . . ,�n� with time constants, ki ;ki� �k1 ,k2 , . . . ,kn�,
the probability of the sum of n independent random variables
being less than t is a convolution of those variables,
����i

n�i�� t�=���1� t� � ¯ � ���n� t� where the � sym-
bol denotes a convolution, and has the following form:

�
��
i

n

�i� � t� = 1 − �
i=1

n ��
j�i

kj

kj − ki
�e−kit.

By substituting these two expressions where appropriate,

ai+1

ai
=

�
j=1

3

Cj �
branches

�
n=1

i+1 �1 − �
j�n

kj

kj − kn
e−knt��

l=1

i+1

�
m

kl

kl + km

�
j=1

3

Cj �
branches

�
n=1

i �1 − �
j�n

kj

kj − kn
e−knt��

l=1

i

�
m

kl

kl + km

.

�6�

This formula can be rearranged by factoring out the i+1 term
inside the summation over the different “branches”

ai+1

ai
=

�
j=1

3

Cj �
branches

�
��
n=1

i

1 − 	n
n� + ���i+1�
�
j=1

3

Cj �
branches

�
n=1

i

�1 − 
n��i

, �7�

where �=� j�i+1
kj

kj−ki+1
e−ki+1t, 	n=

ki+1

ki+1−kn
, 
n=� j�i+1

kj

kj−kn
e−knt,

and �i=�l=1
i �m

kl

kl+klm
. The error, E, that is introduced by trun-

cating the sum at a given number of steps is

E = O
�
j=1

3

Cj �
branches

�
��
n=1

i

1 − 	n
n� + ���i+1�
�
j=1

3

Cj �
branches

�
n=1

i

�1 − 
n��i
� .

�8�

From the formula in Eq. �6�, we see that many conditions
allow for

ai+1

ai

1, in which case, the summation quickly de-

cays and can be truncated at i steps. Moreover, any signifi-
cant difference in time scales for processes in successive
steps results in such a decrease.

Now we consider the application of this formalism to the
model. Summing Eq. �3� from j=1 to j=3 gives us

P��A � t� = P��A,solution � t� + P��A,incomplete � t�

+ P��A,complete � t� . �9�

Equation �9� gives us the cumulative density as a composi-
tion of many terms contributing from initial states; from so-
lution, incomplete complexes, and complete complexes
where the sum is carried out up to i=3 steps,

P��A,solution � t� = Cs��P��7 � t�P��7 � �1�P��7 � �5�� + �P��5 + �8 � t�P��5 � �7�P��5 � �1�P��8 � �4�P��8 � �6��

+ �P��1 + �2 + �7 � t�P��1 � �5�P��1 � �7�P��2 � �3�P��7 � �1�P��7 � �5��

+ �P��1 + �3 + �8 � t�P��1 � �5�P��1 � �7�P��3 � �2�P��8 � �4�P��8 � �6��� ,

P��A,incomplete � t� = CI��P��2 + �7 � t�P��2 � �3�P��7 � �1�P��7 � �5�� + �P��3 + �8 � t�P��3 � �2�P��8 � �4�P��8 � �6��

+ �P��2 + �5 + �8 � t�P��2 � �3�P��5 � �1�P��5 � �7�P��8 � �4�P��8 � �6��

+ �P��3 + �6 + �7 � t�P��3 � �2�P��6 � �4�P��6 � �8�P��7 � �1�P��7 � �5��� ,

P��A,complete � t� = CC�P��8 � t�P��8 � �4�P��8 � �6� + P��6 + �7 � t�P��6 � �4�P��6 � �8�P��7 � �1�P��7 � �5�

+ �P��3 + �4 + �8 � t�P��4 � �6�P��4 � �8�P��3 � �2�P��8 � �4�P��8 � �6��

+ �P��2 + �4 + �7 � t�P��4 � �6�P��4 � �8�P��2 � �3�P��7 � �1�P��7 � �5��� . �10�
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Figure 2 considers Eq. �9� as compared to the exact nu-
merical solution of Eq. �1�. In each case, the survival prob-
ability S�t�=1− P��A� t� is plotted. In Fig. 2�a�, processes
involving activation, �7 and �8, dominate the kinetic pathway
and the approximate solution is quantitatively accurate at all
times. In Figs. 2�b� and 2�c�, �7 and �8 are still dominant time
scales but other transitions within the pathway also contrib-
ute significantly; as a result, Eq. �9� still captures much of the
qualitative behavior such as the shapes and overall time to
relaxation but quantitative deviations in Eq. �9� and Eq. �2�
are readily apparent. Last in Fig. 2�d�, each state transition
contributes to the arrival at the absorbing state. In this sce-
nario, Eq. �9� provides a poor description of the dynamics in
Eq. �2�. Combined, the plots in Fig. 2 illustrate the regimes
of validity of the use of such a path summation technique in
comparison with the exact numerical solution of the kinetic
model in Eqs. �1� and �2�.

We note that Eq. �9� is not particularly useful in itself. It
does however provide a starting point from which simple
analytical expressions can be obtained in different limiting
cases. In the case of the model of scaffold-mediated signal-
ing, Eq. �9� can be simplified in different regimes of scaffold
density.

APPLICATION TO THE DEPENDENCE ON SCAFFOLD
DENSITY

Now, consider the case in which scaffold proteins are
present in negligible amounts. In this case, a separation of

time scales is apparent with one dominant time scale control-
ling kinase activation. For low scaffold concentrations �CS

�1�, most kinases are present in solution and the transition
to either scaffold-bound state is very slow, i.e., k7�k5 and
k7�k1, the summation can therefore, with small error, be cut
off at one step giving �with h.o. denoting higher order terms�

P��A � t� = 1 − � k7

k7 + k1
�� k7

k7 + k5
�e−k7t + h.o. � 1 − e−k7t.

�11�

If signaling is only allowed to take part on a scaffold �i.e.,
k7=0� then by the same argument,

P��A � t� � 1 − e−k5t. �12�

Now consider the situation where scaffold concentration
is very high �i.e., CI�1; in this case, we consider paths
starting from KI that end in the active state. Starting at KI,
there are two branches that lead to KA,

KI ——→
2

KS ——→
7

KA and KI ——→
3

KC ——→
8

KA.
However, the dominant time scale in this scenario is k3

−1.
Keeping only the branch that involves process 3, since k4

k3 and k8
k3 we have

FIG. 2. �Color online� Comparison of the path summation approximation and the exact numerical solution of the three-state model. Exact
numerical solutions of Eq. �1� are compared to Eq. �9� which constitutes a truncation of the path summation in Eq. �4� at i=3 steps. Exact
solutions are shown in solid lines and the approximate solutions in dotted lines. Parameters used are �a� k1=0.001, k2=0.002, k3=0.003,
k4=0.004, k5=0.005, k6=0.006, k7=k8=1.0, CS=0.5, CC=0.5, CI=0.0. �b� k1=0.001, k2=1.002, k3=1.003, k4=0.004, k5=0.005, k6

=0.006, k7=k8=1.0, CS=0.0, CC=0.0, CI=1.0. �c� k1=0.101, k2=0.102, k3=0.103, k4=0.104, k5=0.105, k6=0.106, k7=k8=1.0, CS=0.5,
CC=0.5, CI=0.0. �d� k1=1.001, k2=1.002, k3=1.003, k4=1.004, k5=1.005, k6=1.006, k7=k8=1.0, CS=0.333, CC=0.333, CI=0.333.
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P��A � t� = P��3 + �8 � t�P��3 � �4�P��8 � �4�P��8 � �6�

= 1 − � k3

k3 + k4
�� k8

k8 + k4
�� k8

k8 + k6
�

�� k8

k8 − k3
e−k3t +

k3

k3 − k8
e−k8t� + h.o. � 1

− � k3k8
2

k4�k8 + k4��k8 + k6�
�e−k3t. �13�

In the intermediate regime of scaffold density, no such sepa-
ration of time scales is apparent; also, there is significant
probability that a kinase resides in any of the three initial
states. Typical equilibrium disassociation constants,Kd, for
association to a scaffold are �1 �M �1 kT /molecule
�0.6 kCal /mol� and this corresponds to a binding energy
F=−kbT ln�Kd� of 12–15 kT �21�. Given this binding affinity
and typical kinase concentrations that result in an excess
number of signaling residing in solution than potentially
bound to a scaffold �22�, �85% �Pscaf�0.85� of proteins are
bound to a scaffold. This implies that �Pscaf�n, for n=3 bind-
ing sites, �72% of the bound signaling proteins exist in fully
assembled signaling-competent complexes. In this situation,
all pathways are important and the summation in Eq. �3�
requires more terms than the truncation at i=3 that is con-
tained in Eq. �9�. This expression gives us, when decom-
posed into a contribution from solution, incomplete com-
plexes, and complete complexes, a superposition of many
exponential terms. In this case, one can see from the formula
that the cumulative distribution is a composition of many
characteristic time scales that govern signaling dynamics. We
show this by solving Eq. �2� numerically in Fig. 3.

Figure 3 illustrates the behavior of the parametrized con-
centration dependence on the shapes of the integrated wait-
ing time distributions. The shapes of these curves provide
information on how kinase activation is distributed over time
and provide a useful measure for the characterization of sig-
naling dynamics and the time scale dependence of kinase
activation in the model. From the physical processes occur-
ring in our model, there are multiple ways in which param-
eters are affected by changes in scaffold concentration. One
effect is the alteration of CI and CS, the number of proteins
that exist in complexes that are incomplete and signaling
competent, respectively. The rates of transitions between
states corresponding to processes occurring with times �1, �3,
and �5 are each affected by the relative scaffold concentra-
tions and thus CI and CS.

We first consider a parametrization in which the rates of
the transitions to each scaffold containing state are propor-
tional to concentration. In this situation, the rates in the
model are weakly �linearly� coupled to the relative scaffold
concentration. This parametrization describes the scenario in
which the density of scaffolds relative to the concentration
enzymes is small and the system is dilute. For this scheme,
k1=k1

0CI, k3=k3
0CS, and k5=k5

0CS. With this parametrization,
Fig. 3�a� contains plots of S�t�, obtained from the numerical
solution of Eq. �2�. For unbinding transitions, a typical off
rate �21� ��0.1 s−1� is used. Also, the rate of activation of a
kinase when completely assembled onton a scaffold is taken

to be �100 times greater than that in solution. This effect
follows from the elimination of the encounter time between
the enzyme and the substrate.

In Fig. 3�a�, first consider when kinase activation is pri-
marily occurring on the scaffold �CC=0.05, CI=0.05, CS
=0.90, solid line�. In this situation, S�t� decays over a time
scale that characterizes signal propagation. This time scale
results from the time it takes for a kinase in solution to be-
come active. Additional contributions from kinases on a scaf-
fold and those in solution serve to broaden the shape of the
distribution away from a single exponential expected from
Eq. �10�.

Next, consider the case when a significant population of
each state is present �CC=0.333, CI=0.333, CS=0.333,
dashed-dotted line�. In this case, kinases are evenly distrib-
uted over each of the inactive states and the decay of S�t� and
thus signal propagation extends across multiple decades. The
smooth decay of S�t� is interpreted as originating from the
many processes that contribute to signal propagation.

In the other cases considered, proteins are confined to
incomplete signaling complexes �CC=0.05, CI=0.90, CS
=0.05, dotted line� or exist predominantly in solution �CC
=0.05, CI=0.05, CS=0.90, dashed line�. In these situations,
kinase activation occurs predominantly through a two-stage
mechanism. The first stage involves the population of ki-
nases that either reside in or those that transition to the fully,
assembled �KC� state and are quickly activated. The second

FIG. 3. �Color online� Variations in scaffold concentration. Nu-
merical solutions of Eq. �1� are considered with base parameters:
k1

0=1.001, k2=0.102, k3
0=1.003, k4=0.104, k5

0=1.005, k6=0.106,
k7=0.1k8=10.0. CC, CI, and CS=1−CC−CI are varied. �a� Linear
�ki=ki

0Cj� and �b� quadratic �ki=ki
0�Cj�2�, �for i=1,3,5 and j=S , I�,

parametrizations of the effects of the rates by changes in scaffold
concentration are used. Four cases are considered: CC=0.05, CI

=0.05, CS=0.90 �dashed lines�; CC=0.90, CI=0.05, CS=0.05 �solid
lines�; CC=0.05, CI=0.90, CS=0.05 �dotted lines�; CC=0.333, CI

=0.333, CS=0.333 �dashed-dotted lines�.
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stage of activation involves the population of kinases that are
slowly activated in the solution state.

Alternatively, it is conceivable that the rates, k1, k3, and
k5, depend on scaffold concentration in a more complicated
manner. Therefore, we also considered a quadratic depen-
dence of the rates on the relative scaffold concentrations. We
chose a quadratic dependence because it represents the next
simplest way in which the rate constants can depend on scaf-
fold concentration. In this situation, the relative concentra-
tion of scaffolds is denser so that nonlinear concentration
effects become more important. In Fig. 3�b�, we considered
the rates to depend on scaffold concentration in a nonlinear,
quadratic manner; i.e., k1=k1

0�CI�2, k3=k3
0�CS�2, and k5

=k5
0�CS�2. The primary effect as seen in the plots is to

broaden the shape of the decay curves of kinase activation in
the later stage.

We showed that a multistate kinetic model with Markov-
ian dynamics can give rise to complicated multiexponential
kinetics in some range of scaffold concentrations. It is likely,
however, that transitions between these states in actuality
have more complicated transitions. The minimal model pre-
sented, therefore, illustrates the simplest mechanism that il-
lustrates how a waiting time distribution for signal transduc-
tion can be affected by scaffold concentration.

SUMMARY

In summary, we illustrated in a simple model, how scaf-
fold concentration affects the competition of the many pro-
cesses that govern scaffold-mediated signal transduction. The

shape of such a distribution is believed to be important in
detecting the time scale dependence of biochemical signaling
�23,24�. We applied an approximate technique, involving a
weighted path summation, along with exact numerical solu-
tions to show how the shape of waiting time distribution of
kinase activation and thus the nature of the signal output can
depend on scaffold density within the framework of a mini-
mal kinetic model. Since such models occur in many differ-
ent areas of biology and chemistry, it may be interesting to
investigate the behaviors of other models �25,26� in the con-
text of this weighted path summation technique.

Ultimately, the mimimal model makes experimentally
testable predictions. Advances in imaging techniques that
have been used to study signal propagation allow for the
monitoring of kinase activation in more detail than is tradi-
tionally allowed for in bulk measurements such as those that
involve antibody-based immunoprecipitation techniques. For
example, resonance energy transfer techniques with donor
and acceptor fluorophores have been used to study signal
propagation in live cells �27,28� and may be able to monitor
waiting time distributions in detail and also connect how
these distributions relate experimentally to other readouts of
signal output.

ACKNOWLEDGMENTS

This work is supported in part from NIH Grant No.
PO1AI071195-01. I thank Arup Chakraborty for his support.
I am also grateful to Fei Liang and Roger York for helpful
discussions and comments on this work.

�1� T. Pawson, Cell 116, 191 �2004�.
�2� T. Pawson and J. D. Scott, Trends Biochem. Sci. 30, 286

�2005�.
�3� W. R. Burack and A. S. Shaw, Curr. Opin. Cell Biol. 12, 211

�2000�.
�4� D. Bray, Annu. Rev. Biophys. Biomol. Struct. 27, 59 �1998�.
�5� J. W. Locasale, A. S. Shaw, and A. K. Chakraborty, Proc. Natl.

Acad. Sci. U.S.A. 104, 13307 �2007�.
�6� R. L. Kortum et al., Mol. Cell. Biol. 25, 7592 �2005�.
�7� R. L. Kortum and R. E. Lewis, Mol. Cell. Biol. 24, 4407

�2004�.
�8� C. J. Bashor et al., Science 319, 1539 �2008�.
�9� J. W. Locasale and A. K. Chakraborty, PLOS Comput. Biol. 4,

e1000099 �2008�.
�10� R. Heinrich, B. G. Neel, and T. A. Rapoport, Mol. Cell 9, 957

�2002�.
�11� L. O. Murphy et al., Nat. Cell Biol. 4, 556 �2002�.
�12� S. D. M. Santos, P. J. Verveer, and P. I. H. Bastiaens, Nat. Cell

Biol. 9, 324 �2007�.
�13� T. Lu et al., Proc. Natl. Acad. Sci. U.S.A. 103, 16752 �2006�.
�14� Y. H. Lan and G. A. Papoian, Phys. Rev. Lett. 98, 228301

�2007�.
�15� H. P. Lu, L. Y. Xun, and X. S. Xie, Science 282, 1877 �1998�.
�16� X. S. Xie et al., Annu. Rev. Biophys. Biomol. Struct. 37, 417

�2008�.
�17� N. Dard and M. Peter, BioEssays 28, 146 �2006�.
�18� J. Gunawardena, Biophys. J. 93, 3828 �2007�.
�19� S. C. Kou et al., J. Phys. Chem. B 109, 19068 �2005�.
�20� S. X. Sun, Phys. Rev. Lett. 96, 210602 �2006�.
�21� R. P. Bhattacharyya et al., Science 311, 822 �2006�.
�22� J. E. Ferrell, Trends Biochem. Sci. 21, 460 �1996�.
�23� M. Behar, H. G. Dohlman, and T. C. Elston, Proc. Natl. Acad.

Sci. U.S.A. 104, 16146 �2007�.
�24� J. W. Locasale, e-print arXiv:0802.2683.
�25� O. Flomenbom and R. J. Silbey, Proc. Natl. Acad. Sci. U.S.A.

103, 10907 �2006�.
�26� Xiaochuan Xue, Linchen Gong, Fei Liu, and Zhong-can Ou-

Yang, Phys. Rev. E 77 050903�R� �2008�.
�27� W. R. Burack and A. S. Shaw, J. Biol. Chem. 280, 3832

�2005�.
�28� B. D. Slaughter, J. W. Schwartz, and R. Li, Proc. Natl. Acad.

Sci. U.S.A. 104, 20320 �2007�.

THREE-STATE KINETIC MECHANISM FOR SCAFFOLD-… PHYSICAL REVIEW E 78, 051921 �2008�

051921-7


